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Outline

- GAM / EGAM – brief introduction and relation to energetic particle transport.

- Dispersion Relation of GAM / EGAM.

- Theoretical description of global EGAM.

- Comparison to N=0 oscillation during ramp-up discharge on DIII-D – discharge #159243.
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GAM – Geodesic Acoustic Mode

- GAM are a low frequency electrostatic oscillation, with toroidal N=0, poloidal M=0 combined with
M=±1,±2.

- First predicted by [N. Winsor, Phys. Fluids (1968)].

- The eigenmode can appear with reverse q profile (close to the center), when the dispersion relation
presents a maximum for thermal plasma [H.L. Berk (2006) / V.P. Lakhin (2014)].

- The presence of a similar mode exited by Energetic Particles (E-GAM), theoretically predicted [G. Y.
Fu, (2008)] and experimentally observed [R. Nazikian (2008)] is possibly a cause of energetic ion losses.
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GAM calculated by NOVA Code
- NOVA calculates the dispersion relation based on ideal MHD equations [C.Z. Cheng, Phys. Fluids (1986) ]:
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- NOVA calculates the N=0 dispersion relation with slightly lower frequency than the standard formula.

- GAM eigenmode can be calculated for strongly reverse q profile, when 𝜔0! produces maximum OFF-AXIS
(accumulation point).
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Kinetic equation and distribution function

Using the drift kinetic equation in the form:
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Radial drift velocity 𝑣𝑑𝑟,' = 𝑠𝑖𝑛𝜗 𝑣∥2 +
1
2
𝑣⊥2 /𝜔𝑐𝛼𝑅0

Maxwellian equilibrium distribution function for thermal particles (th) and slowing down like distribution 
function for (ep).
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The perturbed frequency𝑓@ and electrostatic potential ∅ expanded in Fourier for 𝜗, and eikoidal
approximation for 𝑟 and 𝑡:

𝑋 𝑟, 𝜗, 𝑡 = 𝑋0 +𝑋𝑠𝑠𝑖𝑛𝜗 + 𝑋𝑐𝑐𝑜𝑠𝜗 + 𝑋2𝑠𝑠𝑖𝑛2𝜗 + 𝑋2𝑐𝑐𝑜𝑠2𝜗 exp 𝑖𝑘F𝑟 − 𝑖𝜔𝑡 (3)

Eikoidal approximation imply ⁄𝜕 𝜕𝑟 → 𝑖𝑘𝑟
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Density Oscillation 
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- From quasineutrality, in the limit 𝜌!𝑘B! ≪ 1

- Electron density oscillations:

𝑛 GH = − :G'I(
J'K)'

* L+
𝜙H

𝑛 G:M = − :G'I(
J'K)'

* L+
𝜙:M (4)

𝑛 GM = 𝑛 G:H = 0
- Electrostatic oscillations:

𝜙H = −𝜏G
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-

QRN-
𝑞:𝜌OP: 𝑘F:𝜙D (5)

𝜙M = 𝜙 :H = 0

- EP effects are negligible due to small density.



Thermal GAM dispersion relation
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- From average of radial current 𝑗@ = 𝑒@ ∮𝑑<𝑣 𝑣4B,@ sin 𝜗 𝑓@.

- The resonance condition 𝑗C + 𝑗; = 0, disregarding 𝜌!𝑘B!.

- Thermal GAM dispersion relation (𝐷83 = 0):
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𝜎% is formally included, calculated by NOVA.

- From 𝜔 → 𝜔 + 𝑖𝛾 with 𝛾 ≪ 𝜔, the linear growth rate: 

𝛾 ≈ −
𝜔𝑅D𝑞
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𝜔:𝑅D:𝑞:
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+ 1+ 𝜏G exp −
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EGAM dispersion relation

- EGAM Dispersion relation contribution ( 𝑗X + 𝑗G + 𝑗GY = 0 → 𝐷OP +𝐷GY = 0 ):
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- EP toroidal transit frequency 𝜔8B = 𝑉G 1 − 𝜆H /𝑞𝑅H.

- The injection angle 𝜆H = 𝑉GI! / 𝑉G! .

- The linear growth rate 𝛾 ∝ 5 − 2𝜆H 2 − 𝜆H − ∆𝜆H!
6J

: 6KLT
, for 𝜔! < 𝜔8B! .

- Instability found when 𝝀𝟎>0.43 for ∆𝜆H~0.2.

- Result similar to [Z. Qiu, (2010)] for ∆𝜆H = 0, 𝜎% = 1.
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Eigenmode Equation via Finite Larmor Radius (FLR)

- Keeping terms up to 𝜌!𝑘B!:
𝑗X + 𝑗G + 𝑗GY = 0 → 𝐷OP +𝐷GY + 𝐿OP𝜌OP: + 𝐿GY𝜌GY: 𝑘F: 𝑘F𝜙D = 0. (8)

- Thermal FLR term:
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- FLR connect different magnetic surfaces
- In presence of EP, FLR is dominated by 𝐿;',  𝜌;'! ≫ 𝜌83!
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Eigenmode Equation

- Recovering the derivative form: ⁄𝜕 𝜕𝑟 ~𝑖𝑘B in	eq.8	(	 𝐷!" + 𝐷#$ + 𝐿!"𝜌!"% + 𝐿#$𝜌#$% 𝑘&% 𝑘&𝜙' = 0 )

𝑄 𝑟, 𝜔 4VT
4B

𝑟, 𝜔 − W!

WB!
4VT
4B

𝑟, 𝜔 = 0 (11)     

Q 𝑟,𝜔 =
𝐷OP +𝐷GY

𝐹OP𝜌OP: + 𝐹GY𝜌GY:

- The solution is calculated numerically between the axis and some point far from 𝑄~0, then matched 
with the WKB approximation:

4VT
4B

= Xf;$ ∫ hij=X!;k$ ∫ hij

Yf/U
(12)

- A physical solution is found only around the maximum of dispersion relation.

- 𝐼𝑚(𝑄) induces convergence runaway [LeVeque (2007)], physical solution is found for 𝐶!=0. 

- Disregarding 𝐼𝑚(𝐹;') preserves the eigenmode structure, with minimum convergence runaway 
solution.
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TRANSP profile of #159243
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Temperature and q profile

- Time evolution:
500ms – solid line
900ms – dot line

- No strong radial variation in temperature, and
the ratio remains around 𝜏; ~ 0.86.

- q at axis decrease from ~ 4.7 to 3.

- mostly co-tangencial discharge with
𝜆H = 0.5~0.6, ∆𝜆H= 0.2.

- Kick model for EP is used [M. Podesta, (2014)].

- Carbon impurities correction are included via
effective mass.
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Local dispersion relation
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- The local dispersion relation for 500ms and 900ms,
injection angle 𝜆H = 0.5 and 𝑛G/𝑛C ≈ 4% for 𝑟/𝑎 < 0.45,
smoothly decrease for 𝑟/𝑎 > 0.45, for 900ms EP is limited
to 𝑟/𝑎 < 0.35.

- Local th GAM is calculated by NOVA.

- The interaction between EP transit frequency and Local th
GAM produces the Local EGAM.

- Maximum OFF-AXIS in the dispersion relation is found for
500ms, around r/a=0.3.

- Maximum ON-AXIS is found for 900ms.

- Both have positive growth rate 𝛾 > 4 %.
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Global E-GAM radial structure
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- The global behavior is much more
pronounced for 500ms, with Airy
function for r/a = 0 - 0.5, and a
outgoing wave is find for r/a > 0.5.

- For 900ms is found the outgoing
wave from r/a=0.

- In both cases 𝜌!𝑘"! ≈ 0.6

- Radial structure similar to
obtained by kinetic, numerical [G. Y. 
Fu, (2008)] and analytically [Z. S. Qu, 
(2017)] for EGAM.

- MHD numerically [H.L. Berk, 2006]
and analytically [Lakhin, 2014],
present Dirac for 𝑑𝜙# /dr, in the
maximum of dispersion relation,
M=1,2 are global.
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Consistency with N=0 oscilations observed in DIII-D
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- NOVA simulation of TRANSP kick model profiles.

- The results match the observed N=0 mode by Mirnov
coils on #159243 in DIII-D. The observed frequency in
yellow, and the matched points in gray.

- Error bars due to variation of 𝜆D = 0.5 - 0.6.

- The frequency increment in time is due to time
evolution of temperature and q.

- X means that there is no maximum in the continuum
and no eigenmode should be observed at that point.

- Good numerical agreement between theorical
prediction and experimental data.
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Summary

- Slightly reverse q profile is a source for global EGAM.

- The instability is dominated by injection angle 𝜆! and absolute value of q, due to relation of
toroidal EP transit frequency and and GAM frequency.

- The condition for instability is the presence of OFF-AXIS maximum in the EGAM local dispersion
relation.

- Good quantitative agreement with DIII-D N=0 oscillation on #159243 discharge.
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Profiles used slides 12 and 13
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Consistent with TRANSP
𝑇500 𝐽 = 1.8 1 − (𝑟/𝑎)2 2.5 𝑘𝑒𝑉
𝑇900 𝐽 = 2.0 1 − (𝑟/𝑎)2 2.5 𝑘𝑒𝑉

𝑞500 = 4.7 − 10(𝑟/𝑎)2+14.8(𝑟/𝑎)3−2(𝑟/𝑎)4
𝑞900 = 3 − 1.8(𝑟/𝑎) −4(𝑟/𝑎)2+9,6(𝑟/𝑎)4

𝜏𝑒 = 0,86

𝜎𝑚ℎ𝑑 = 0.7 (NOVA gives a profile 0.7 in center 0.75 near edge)

𝑅0 = 1,67𝑚
𝑎 = 0.64



Classical EP profile – TRANSP reconstruction
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N.N. Gorelenkov et al (2018)

Injection starts with 𝜆1 = 0.6, and moves to parallel motion as slow down



Eigenmode – previews work comparision
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[G. Y. Fu, (2008)] [Z. S. Qu, (2017)] [Lakhin, 2014]

MHD, thermal GAM
Kinetic – analytical
Single energy EP

Kinetic – numerical
Slowing Down EP


